Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.713
Filtrar
1.
Brain Res ; 1815: 148443, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290608

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Ibudilast is known to produce beneficial effects in several neurological disorders including neuropathic pain, multiple sclerosis, etc. by displaying its neuroprotective and anti-inflammatory properties. Here, in our study, the pharmacological outcome of ibudilast administration was investigated in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. METHODS: Autistic-like symptoms were induced in Wistar male pups of dams administered with Valproic acid (VPA) on embryonic day 12.5. VPA-exposed male pups were administered with two doses of ibudilast (5 and10 mg/kg) and all the groups were evaluated for behavioral parameters like social interaction, spatial memory/learning, anxiety, locomotor activity, and nociceptive threshold. Further, the possible neuroprotective effect of ibudilast was evaluated by assessing oxidative stress, neuroinflammation (IL-1ß, TNF-α, IL-6, IL-10) in the hippocampus, % area of Glial fibrillary acidic protein (GFAP)-positive cells and neuronal damage in the cerebellum. KEY FINDINGS: Treatment with ibudilast significantly attenuated prenatal VPA exposure associated social interaction and spatial learning/memory deficits, anxiety, hyperactivity, and increased nociceptive threshold, and it decreased oxidative stress markers, pro-inflammatory markers (IL-1ß, TNF-α, IL-6), and % area of GFAP-positive cells and restored neuronal damage. CONCLUSIONS: Ibudilast treatment has restored crucial ASD-related behavioural abnormalities, potentially through neuroprotection. Therefore, benefits of ibudilast administration in animal models of ASD suggest that ibudilast may have therapeutic potential in the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Inibidores de Fosfodiesterase , Efeitos Tardios da Exposição Pré-Natal , Ácido Valproico , Animais , Feminino , Gravidez , Ratos , Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Agitação Psicomotora/tratamento farmacológico , Ratos Wistar , Comportamento Social , Aprendizagem Espacial/efeitos dos fármacos , Ácido Valproico/administração & dosagem , Ácido Valproico/efeitos adversos , Masculino
2.
Sci Rep ; 12(1): 1395, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082351

RESUMO

Research on placebo analgesia usually shows that people experienced a reduction in pain after using a placebo analgesic. An emerging line of research argues that, under some circumstances, merely possessing (but not using) a placebo analgesic could induce placebo analgesia. The current study investigates how temporary expectation of pain reduction associated with different forms of possessing a placebo analgesic affects pain outcomes. Healthy participants (n = 90) were presented with a vial of olive oil (placebo), described as a blended essential oil that blocks pain sensations upon nasal inhalation, and were asked to anticipate the benefits of such analgesic oil to the self (such as anticipating the analgesic oil to reduce their pain). Participants were randomized into one of three different possession conditions: physical-possession condition (participants possessed a tangible placebo analgesic oil, inducing an expectation to acquire analgesic benefit early upon the experience of pain), psychological-possession condition (participants possessed a coupon, which can be redeemed for a placebo analgesic oil, inducing an expectation to acquire analgesic benefit later upon the experience of pain), or no-possession condition. Participants did a cold pressor test (CPT) to experience experimentally-induced pain on their non-dominant hand. Their objective physical pain responses (pain-threshold and pain-tolerance), and subjective psychological pain perception (pain intensity, severity, quality, and unpleasantness) were measured. Results revealed that participants in the physical-possession condition reported greater pain-threshold, F(2, 85) = 6.65, p = 0.002, and longer pain-tolerance, F(2, 85) = 7.19, p = 0.001 than participants in the psychological-possession and no-possession conditions. No significant group difference was found in subjective pain perception. The results of this study can advance knowledge about pain mechanisms and novel pain management.


Assuntos
Analgesia/métodos , Analgésicos/administração & dosagem , Azeite de Oliva/administração & dosagem , Manejo da Dor/métodos , Percepção da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/psicologia , Administração por Inalação , Adolescente , Feminino , Voluntários Saudáveis , Humanos , Masculino , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Efeito Placebo , Estudantes , Adulto Jovem
3.
J Neurosci ; 42(3): 405-415, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34880120

RESUMO

Duloxetine, a serotonin and norepinephrine reuptake inhibitor, is the best-established treatment for painful chemotherapy-induced peripheral neuropathy (CIPN). While it is only effective in little more than half of patients, our ability to predict patient response remains incompletely understood. Given that stress exacerbates CIPN, and that the therapeutic effect of duloxetine is thought to be mediated, at least in part, via its effects on adrenergic mechanisms, we evaluated the contribution of neuroendocrine stress axes, sympathoadrenal and hypothalamic-pituitary-adrenal, to the effect of duloxetine in preclinical models of oxaliplatin- and paclitaxel-induced CIPN. Systemic administration of duloxetine, which alone had no effect on nociceptive threshold, both prevented and reversed mechanical hyperalgesia associated with oxaliplatin- and paclitaxel-CIPN. It more robustly attenuated oxaliplatin CIPN in male rats, while it was more effective for paclitaxel CIPN in females. Gonadectomy attenuated these sex differences in the effect of duloxetine. To assess the role of neuroendocrine stress axes in the effect of duloxetine on CIPN, rats of both sexes were submitted to adrenalectomy combined with fixed level replacement of corticosterone and epinephrine. While CIPN, in these rats, was of similar magnitude to that observed in adrenal-intact animals, rats of neither sex responded to duloxetine. Furthermore, duloxetine blunted an increase in corticosterone induced by oxaliplatin, and prevented the exacerbation of CIPN by sound stress. Our results demonstrate a role of neuroendocrine stress axes in duloxetine analgesia (anti-hyperalgesia) for the treatment of CIPN.SIGNIFICANCE STATEMENT Painful chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating dose-dependent and therapy-limiting side effect of many of the cytostatic drugs used to treat cancer (Argyriou et al., 2010; Marmiroli et al., 2017). Duloxetine is the only treatment for CIPN currently recommended by the American Society of Clinical Oncology (Hershman et al., 2014). In the present study, focused on elucidating mechanisms mediating the response of oxaliplatin- and paclitaxel-induced painful peripheral neuropathy to duloxetine, we demonstrate a major contribution to its effect of neuroendocrine stress axis function. These findings, which parallel the clinical observation that stress may impact response of CIPN to duloxetine (Taylor et al., 2007), open new approaches to the treatment of CIPN and other stress-associated pain syndromes.


Assuntos
Analgésicos/uso terapêutico , Antineoplásicos/efeitos adversos , Cloridrato de Duloxetina/uso terapêutico , Limiar da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Analgésicos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Corticosterona/sangue , Cloridrato de Duloxetina/farmacologia , Feminino , Masculino , Oxaliplatina/efeitos adversos , Paclitaxel/efeitos adversos , Manejo da Dor , Doenças do Sistema Nervoso Periférico/sangue , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos , Ratos Sprague-Dawley
4.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R64-R76, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851729

RESUMO

Our knowledge about how low-dose (analgesic) fentanyl affects autonomic cardiovascular regulation is primarily limited to animal experiments. Notably, it is unknown if low-dose fentanyl influences human autonomic cardiovascular responses during painful stimuli in humans. Therefore, we tested the hypothesis that low-dose fentanyl reduces perceived pain and subsequent sympathetic and cardiovascular responses in humans during an experimental noxious stimulus. Twenty-three adults (10 females/13 males; 27 ± 7 yr; 26 ± 3 kg·m-2, means ± SD) completed this randomized, crossover, placebo-controlled trial during two laboratory visits. During each visit, participants completed a cold pressor test (CPT; hand in ∼0.4°C ice bath for 2 min) before and 5 min after drug/placebo administration (75 µg fentanyl or saline). We compared pain perception (100-mm visual analog scale), muscle sympathetic nerve activity (MSNA; microneurography, 11 paired recordings), and beat-to-beat blood pressure (BP; photoplethysmography) between trials (at both pre- and postdrug/placebo timepoints) using paired, two-tailed t tests. Before drug/placebo administration, perceived pain (P = 0.8287), ΔMSNA burst frequency (P = 0.7587), and Δmean BP (P = 0.8649) during the CPT were not different between trials. After the drug/placebo administration, fentanyl attenuated perceived pain (36 vs. 66 mm, P < 0.0001), ΔMSNA burst frequency (9 vs. 17 bursts/min, P = 0.0054), and Δmean BP (7 vs. 13 mmHg, P = 0.0174) during the CPT compared with placebo. Fentanyl-induced reductions in pain perception and Δmean BP were moderately related (r = 0.40, P = 0.0641). These data provide valuable information regarding how low-dose fentanyl reduces autonomic cardiovascular responses during an experimental painful stimulus.


Assuntos
Analgésicos Opioides/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/inervação , Fentanila/administração & dosagem , Músculo Esquelético/inervação , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Sistema Nervoso Simpático/efeitos dos fármacos , Adulto , Analgésicos Opioides/efeitos adversos , Temperatura Baixa , Estudos Cross-Over , Feminino , Fentanila/efeitos adversos , Humanos , Imersão , Masculino , Dor/fisiopatologia , Dor/psicologia , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Água , Adulto Jovem
5.
Front Immunol ; 12: 787565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950149

RESUMO

The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 µm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Interleucina-23/toxicidade , Fibras Nervosas Amielínicas/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Dor/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Humanos , Interleucina-17/metabolismo , Luz , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/metabolismo , Nociceptores/metabolismo , Optogenética , Dor/genética , Dor/metabolismo , Dor/fisiopatologia , Caracteres Sexuais , Células THP-1 , Canais de Cátion TRPV/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Comput Math Methods Med ; 2021: 8553015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899971

RESUMO

AIM: Our study is to determine the influence of ropivacaine-loaded magnetic nanoparticles (MNP/Rop) on ankle nerve block in rats. MATERIALS AND METHODS: MNP/Rop was prepared and then injected intravenously into rats to evaluate its anesthetic effect on rat limbs. Mechanical pain thresholds paw withdrawal threshold (PWT) and paw withdrawal thermal latency (PWL) were employed for the assessment of ankle nerve block in rats. RESULTS: PWT increased from T1 to T4 in each group (P < 0.05). The intergroup comparison determined no distinct difference in the PWT value among the three series at T1 (P > 0.05); however, PWT values at T2-T4 were higher in nerve block control group (NBCG) and MNP/Rop group than in blank group (BG), and they remained slightly higher in MNP/Rop group than in NBCG. The intragroup comparison revealed that from T1 to T4, PWL in each group showed a rising trend. The PWL at T1 showed no evident difference among the three series (P > 0.05); however, PWL values at T2-T4 were higher in NBCG and MNP/Rop group than in BG, and they remained slightly higher in MNP/Rop group than in NBCG. In MNP/Rop group, both PWT and PWL increased with the increase of Fe3O4 load in MNP/Rop (P < 0.05), while PWT and PWL remained unchanged when the load was 2.189%; moreover, PWT and PWL elevated as Rop concentration increased in MNP/Rop (P < 0.05), while they kept unaltered under 40 µL 1% Rop. CONCLUSION: Intravenous injection of MNP/Rop into rats and inhalation of MNP into the ankle joint can effectively block ankle nerve conduction in rats.


Assuntos
Anestésicos Locais/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Bloqueio Nervoso/métodos , Ropivacaina/administração & dosagem , Animais , Biologia Computacional , Articulações do Pé/inervação , Articulações do Pé/fisiologia , Injeções Intravenosas , Nanopartículas de Magnetita/ultraestrutura , Masculino , Modelos Animais , Nanocompostos/administração & dosagem , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Oxid Med Cell Longev ; 2021: 9577874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721761

RESUMO

BACKGROUND: Neuropathic pain is a debilitating disease with few effective treatments. Emerging evidence indicates the involvement of mitochondrial dysfunction and oxidative stress in neuropathic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a potent regulator of the antioxidant response system. In this study, we investigated whether RTA-408 (RTA, a novel synthetic triterpenoid under clinical investigation) could activate Nrf2 and promote mitochondrial biogenesis (MB) to reverse neuropathic pain and the underlying mechanisms. METHODS: Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Pain behaviors were measured via the von Frey test and Hargreaves plantar test. The L4-6 spinal cord was collected to examine the activation of Nrf2 and MB. RESULTS: RTA-408 treatment significantly reversed mechanical allodynia and thermal hyperalgesia in CCI mice in a dose-dependent manner. Furthermore, RTA-408 increased the activity of Nrf2 and significantly restored MB that was impaired in CCI mice in an Nrf2-dependent manner. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) is the key regulator of MB. We found that the PGC-1α activator also induced a potent analgesic effect in CCI mice. Moreover, the antinociceptive effect of RTA-408 was reversed by the preinjection of the PGC-1α inhibitor. CONCLUSIONS: Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Our results indicate that Nrf2 may be a potential therapeutic strategy to ameliorate neuropathic pain and many other disorders with oxidative stress and mitochondrial dysfunction.


Assuntos
Analgésicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Neuralgia/prevenção & controle , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neuropatia Ciática/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Doença Crônica , Constrição Patológica , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Neuralgia/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia
8.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768835

RESUMO

Pain is one of the most severe concerns in tongue cancer patients. However, the underlying mechanisms of tongue cancer pain are not fully understood. We investigated the molecular mechanisms of tongue cancer-induced mechanical allodynia in the tongue by squamous cell carcinoma (SCC) inoculation in rats. The head-withdrawal threshold of mechanical stimulation (MHWT) to the tongue was reduced following SCC inoculation, which was inhibited by intracisternal administration of 10Panx, an inhibitory peptide for pannexin 1 (PANX1) channels. Immunohistochemical analyses revealed that the expression of PANX1 was upregulated in the trigeminal spinal subnucleus caudalis (Vc) following SCC inoculation. The majority of PANX1 immunofluorescence was merged with ionized calcium-binding adapter molecule 1 (Iba1) fluorescence and a part of it was merged with glial fibrillary acidic protein (GFAP) fluorescence. Spike frequencies of Vc nociceptive neurons to noxious mechanical stimulation were significantly enhanced in SCC-inoculated rats, which was suppressed by intracisternal 10Panx administration. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) neurons increased significantly in the Vc after SCC inoculation, which was inhibited by intracisternal 10Panx administration. SCC inoculation-induced MHWT reduction and increased pERK-IR Vc neuron numbers were inhibited by P2X7 purinoceptor (P2X7R) antagonism. Conversely, these effects were observed in the presence of P2X7R agonist in SCC-inoculated rats with PANX1 inhibition. SCC inoculation-induced MHWT reduction was significantly recovered by intracisternal interleukin-1 receptor antagonist administration. These observations suggest that SCC inoculation causes PANX1 upregulation in Vc microglia and adenosine triphosphate released through PANX1 sensitizes nociceptive neurons in the Vc, resulting in tongue cancer pain.


Assuntos
Conexinas/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Língua/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Dor do Câncer/patologia , Carcinoma de Células Escamosas , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Microglia/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/fisiopatologia , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/fisiopatologia
9.
Biomed Pharmacother ; 144: 112259, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607107

RESUMO

Knee osteoarthritis (KOA) is a common disease with no specific treatment. Icariin (ICA) is considered an agent for KOA. This study aimed to confirm the pain-related neuromodulation mechanisms of ICA on KOA. Three experiments were designed: (1) verifying the therapeutic effects of ICA in vivo and in vitro, (2) exploring the potential pain-related neuromodulation pathways involved in ICA treatment by functional magnetic resonance imaging (fMRI) and virus retrograde tracing (VRT) and (3) confirming the pain-related targets by tandem mass tag (TMT)-based quantitative proteomics and bioinformatic analyses. Experiment 1 verified the efficacy of ICA in OA animal and cell models. Experiment 2 found a series of brain regions associated with KOA reversed by ICA treatment, indicating that a pain-related hypothalamic-mediated neuromodulation pathway and an endocannabinoid (EC)-related pathway contribute to ICA mechanisms. Experiment 3 explored and confirmed four pain-related genes involved in KOA and ICA treatment. We confirmed the key role of pain-related neuromodulation mechanisms in ICA treatment associated with its analgesic effect. Our findings contribute to considering ICA as a novel therapy for KOA.


Assuntos
Analgésicos/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Articulações/efeitos dos fármacos , Osteoartrite do Joelho/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Condrócitos/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Articulações/inervação , Articulações/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Técnicas de Rastreamento Neuroanatômico , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais , Espectrometria de Massas em Tandem
10.
Biomed Pharmacother ; 144: 112272, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607109

RESUMO

The sigma-1 receptor (Sig-1R) plays an important role in spinal pain transmission by increasing phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). As a result Sig-1R has been suggested as a novel therapeutic target for prevention of chronic pain. Here we investigated whether interleukin-1ß (IL-1ß) modulates the expression of the Sig-1R in spinal astrocytes during the early phase of nerve injury, and whether this modulation affects spinal pGluN1 expression and the development of neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve. Repeated intrathecal (i.t.) administration of IL-1ß from days 0-3 post-surgery significantly reduced the increased pGluN1 expression at the Ser896 and Ser897 sites in the ipsilateral spinal cord, as well as, the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw of CCI mice, which were restored by co-administration of IL-1 receptor antagonist with IL-1ß. Sciatic nerve injury increased the expression of Sig-1R in astrocytes of the ipsilateral spinal cord, and this increase was suppressed by i.t. administration of IL-1ß. Agonistic stimulation of the Sig-1R with PRE084 restored pGluN1 expression and the development of mechanical allodynia that were originally suppressed by IL-1ß in CCI mice. Collectively these results demonstrate that IL-1ß administration during the induction phase of neuropathic pain produces an analgesic effect on neuropathic pain development by controlling the expression of Sig-1R in spinal astrocytes.


Assuntos
Analgésicos/administração & dosagem , Astrócitos/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Interleucina-1beta/administração & dosagem , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Receptores sigma/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Injeções Espinhais , Masculino , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
11.
Biomed Pharmacother ; 144: 112331, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673421

RESUMO

Chemotherapy-induced neuropathic pain is a debilitating and common side effect of cancer treatment and so far no effective drug is available for treatment of the serious side effect. Previous studies have demonstrated ß2-adrenoreceptor (ADRB2) agonists can attenuate neuropathic pain. However, the role of ADRB2 in paclitaxel -induced neuropathic pain (PINP) remains unclear. In this study, we investigated the effect of formoterol, a long-acting ADRB2 agonist, and related mechanisms in PINP. A rat model of PINP was established by intraperitoneal injection of paclitaxel (2 mg/kg) every other day with a final cumulative dose of 8 mg/kg. Hind paw withdrawal thresholds (PWTs) in response to von Frey filament stimuli were used to evaluate mechanical allodynia. Western blot was used to examine the expression of ADRB2, peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factors 1 (NRF1) and mitochondrial transcription factor A (TFAM) and the immunofluorescence was to detect the cellular localization of ADRB2 and PGC-1α in the spinal cord. Moreover, we measured mitochondrial DNA (mtDNA) copy number by qPCR. In our study, formoterol attenuated established PINP and delayed the onset of PINP. Formoterol restored ADRB2 expression as well as mtDNA copy number and PGC-1α, NRF1, and TFAM protein expression, which are major genes involved in mitochondrial biogenesis, in the spinal cord of PINP rats. Moreover, we found the analgesic effect of formoterol against PINP was partially abolished by PGC-1α inhibitor SR-18292. Collectively, these results demonstrated the activation of ADRB2 with formoterol ameliorates PINP at least partially through induction of mitochondrial biogenesis.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Analgésicos/farmacologia , Fumarato de Formoterol/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Biogênese de Organelas , Limiar da Dor/efeitos dos fármacos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Paclitaxel , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
12.
Biomed Pharmacother ; 144: 112308, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649217

RESUMO

INTRODUCTION: Extensive evidence suggests that alpha-lipoic acid (ALA) is effective in diabetic neuropathy pain management. However, little is known on its safety and efficacy in reducing idiopathic pain in normoglycemic subjects. The aim of this study was to evaluate ALA food supplement safety and efficacy in the reduction of different forms of idiopathic pain. METHODS: Two-hundred and ten normoglycemic adults suffering from idiopathic pain (i.e. 57 subjects with primitive neuropathic pain, 141 subjects with arthralgia with unknown etiology, and 12 subjects with idiopathic myalgia) were randomized to receive placebo, 400 mg/day, or 800 mg/day of ALA. Participants underwent two visits (at baseline = t0, and after 2 months = t1) in which two validated questionaries for pain (numerical rating scale [NRS] and visual analogue scale [VAS]) were collected; fasting blood glucose assessment, adverse effects, and renal and hepatic toxicity were also monitored. RESULTS: At t1, none of subjects treated with ALA reported a decreased glycemia or adverse effects. The treated subjects showed a significant reduction in NRS (p < 0.001) while the placebo group did not show any NRS reduction (p = 0.86). Similar results were also obtained for VAS. Statistical analysis aimed at detecting possible differences in NRS and VAS scores among treatment groups based on the source of pain did not reveal any significant effect. CONCLUSIONS: Since the management of idiopathic pain is challenging for physicians, the use of ALA food supplements could be a feasible option, based on its safety and efficacy compared to commonly-used analgesic drugs.


Assuntos
Analgésicos/administração & dosagem , Manejo da Dor , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Administração Oral , Analgésicos/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Dor/diagnóstico , Dor/fisiopatologia , Manejo da Dor/efeitos adversos , Medição da Dor , Ácido Tióctico/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
13.
Mol Brain ; 14(1): 139, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507588

RESUMO

Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.


Assuntos
Ansiedade/fisiopatologia , Dor Crônica/fisiopatologia , Neurônios GABAérgicos/fisiologia , Giro do Cíngulo/fisiopatologia , Inflamação/psicologia , Células Piramidais/fisiologia , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Dor Crônica/psicologia , Clozapina/uso terapêutico , Adjuvante de Freund/toxicidade , Agonistas de Receptores de GABA-A/administração & dosagem , Agonistas de Receptores de GABA-A/farmacologia , Agonistas de Receptores de GABA-A/uso terapêutico , Antagonistas de Receptores de GABA-A/administração & dosagem , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/toxicidade , Neurônios GABAérgicos/enzimologia , Vetores Genéticos/farmacologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Injeções , Interneurônios/efeitos dos fármacos , Masculino , Muscimol/administração & dosagem , Muscimol/farmacologia , Muscimol/uso terapêutico , Teste de Campo Aberto , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Picrotoxina/toxicidade , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/enzimologia , Ratos , Ratos Sprague-Dawley
14.
Behav Pharmacol ; 32(8): 630-639, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561365

RESUMO

Studies have demonstrated antinociceptive synergy between morphine and delta-9-tetrahydrocannabinol (THC) in animals, but whether such synergy occurs against all types of pain and in humans is unclear. Because a majority of chronic pain patients are women, and sex differences in morphine and THC potencies have been observed in rodents, the present study examined sex-specific effects of morphine and THC given alone and in combination, in rats with persistent inflammatory pain. On day 1, baseline mechanical and thermal response thresholds, hindpaw weight-bearing, locomotor activity, and hindpaw thickness were determined. Inflammation was then induced via hindpaw injection of complete Freund's adjuvant (CFA). Three days later, morphine (s.c.), THC (i.p) or a morphine-THC combination (1:1, 3:1 and 1:3 dose ratios) was administered, and behavioral testing was conducted at 30-240 min postinjection. Morphine alone was antiallodynic and antihyperalgesic, with no sex differences, but at some doses increased weight-bearing on the CFA-treated paw more in males than females. THC alone reduced mechanical allodynia with similar potency in both sexes, but reduced thermal hyperalgesia and locomotor activity with greater potency in females than males. All morphine-THC combinations reduced allodynia and hyperalgesia, but isobolographic analysis of mechanical allodynia data showed no significant morphine-THC synergy in either sex. Additionally, whereas morphine alone was antinociceptive at doses that did not suppress locomotion, morphine-THC combinations suppressed locomotion and did not increase weight-bearing on the inflamed paw. These results suggest that THC is unlikely to be a beneficial adjuvant when given in combination with morphine for reducing established inflammatory pain.


Assuntos
Dronabinol/farmacologia , Inflamação/tratamento farmacológico , Morfina/farmacologia , Dor/tratamento farmacológico , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/farmacologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Feminino , Adjuvante de Freund , Hiperalgesia/tratamento farmacológico , Locomoção/efeitos dos fármacos , Masculino , Morfina/administração & dosagem , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
15.
J Neurosci ; 41(43): 8991-9007, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446571

RESUMO

Different peripheral nerve injuries cause neuropathic pain through distinct mechanisms. Even the site of injury may impact underlying mechanisms, as indicated by the clinical finding that the antiseizure drug carbamazepine (CBZ) relieves pain because of compression injuries of trigeminal but not somatic nerves. We leveraged this observation in the present study hypothesizing that because CBZ blocks voltage-gated sodium channels (VGSCs), its therapeutic selectivity reflects differences between trigeminal and somatic nerves with respect to injury-induced changes in VGSCs. CBZ diminished ongoing and evoked pain behavior in rats with chronic constriction injury (CCI) to the infraorbital nerve (ION) but had minimal effect in rats with sciatic nerve CCI. This difference in behavior was associated with a selective increase in the potency of CBZ-induced inhibition of compound action potentials in the ION, an effect mirrored in human trigeminal versus somatic nerves. The increase in potency was associated with a selective increase in the efficacy of the NaV1.1 channel blocker ICA-121431 and NaV1.1 protein in the ION, but no change in NaV1.1 mRNA in trigeminal ganglia. Importantly, local ICA-121431 administration reversed ION CCI-induced hypersensitivity. Our results suggest a novel therapeutic target for the treatment of trigeminal neuropathic pain.SIGNIFICANCE STATEMENT This study is based on evidence of differences in pain and its treatment depending on whether the pain is above (trigeminal) or below (somatic) the neck, as well as evidence that voltage-gated sodium channels (VGSCs) may contribute to these differences. The focus of the present study was on channels underlying action potential propagation in peripheral nerves. There were differences between somatic and trigeminal nerves in VGSC subtypes underlying action potential propagation both in the absence and presence of injury. Importantly, because the local block of NaV1.1 in the trigeminal nerve reverses nerve injury-induced mechanical hypersensitivity, the selective upregulation of NaV1.1 in trigeminal nerves suggests a novel therapeutic target for the treatment of pain associated with trigeminal nerve injury.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Carbamazepina/uso terapêutico , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Neuralgia do Trigêmeo/tratamento farmacológico , Analgésicos não Narcóticos/farmacologia , Animais , Carbamazepina/farmacologia , Feminino , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/biossíntese , Neuralgia/metabolismo , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Neuralgia do Trigêmeo/metabolismo
16.
Neuropeptides ; 90: 102185, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34419803

RESUMO

It has been shown that systemic and local administration of ultra-low dose morphine induced a hyperalgesic response via mu-opioid receptors. However, its exact mechanism(s) has not fully been clarified. It is documented that mu-opioid receptors functionally couple to T-type voltage dependent Ca+2 channels. Here, we investigated the role of T-type calcium channels, amiloride and mibefradil, on the induction of low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 µg i.t. and 1 µg/kg i.p.) could elicit hyperalgesia as assessed by the tail-flick test. Administration of amiloride (5 and 10 µg i.t.) and mibefradil (2.5 and 5 µg i.t.) completely blocked low-dose morphine-induced hyperalgesia in spinal dorsal horn. Amiloride at doses of 1 and 5 mg/kg (i.p.) and mibefradil (9 mg/kg ip) 10 min before morphine (1 µg/kg i.p.) inhibited morphine-induced hyperalgesia. Our results indicate a role for T-type calcium channels in low dose morphine-induced hyperalgesia in rats.


Assuntos
Analgésicos Opioides/efeitos adversos , Canais de Cálcio Tipo T/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Morfina/efeitos adversos , Amilorida/farmacologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Mibefradil/farmacologia , Morfina/administração & dosagem , Morfina/antagonistas & inibidores , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Opioides mu
17.
J Pain ; 22(11): 1477-1496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34229074

RESUMO

Moderate to severe pain is often treated with opioids, but central mechanisms underlying opioid analgesia are poorly understood. Findings thus far have been contradictory and none could infer opioid specific effects. This placebo-controlled, randomized, 2-way cross-over, double-blinded study aimed to explore opioid specific effects on central processing of external stimuli. Twenty healthy male volunteers were included and 3 sets of assessments were done at each of the 2 visits: 1) baseline, 2) during continuous morphine or placebo intravenous infusion and 3) during simultaneous morphine + naloxone or placebo infusion. Opioid antagonist naloxone was introduced in order to investigate opioid specific effects by observing which morphine effects are reversed by this intervention. Quantitative sensory testing, spinal nociceptive withdrawal reflexes (NWR), spinal electroencephalography (EEG), cortical EEG responses to external stimuli and resting EEG were measured and analyzed. Longer lasting pain (cold-pressor test - hand in 2° water for 2 minutes, tetanic electrical), deeper structure pain (bone pressure) and strong nociceptive (NWR) stimulations were the most sensitive quantitative sensory testing measures of opioid analgesia. In line with this, the principal opioid specific central changes were seen in NWRs, EEG responses to NWRs and cold-pressor EEG. The magnitude of NWRs together with amplitudes and insular source strengths of the corresponding EEG responses were attenuated. The decreases in EEG activity were correlated to subjective unpleasantness scores. Brain activity underlying slow cold-pressor EEG (1-4Hz) was decreased, whereas the brain activity underlying faster EEG (8-12Hz) was increased. These changes were strongly correlated to subjective pain relief. This study points to evidence of opioid specific effects on perception of external stimuli and the underlying central responses. The analgesic response to opioids is likely a synergy of opioids acting at both spinal and supra-spinal levels of the central nervous system. Due to the strong correlations with pain relief, the changes in EEG signals during cold-pressor test have the potential to serve as biomarkers of opioid analgesia. PERSPECTIVE: This exploratory study presents evidence of opioid specific effects on the pain system at peripheral and central levels. The findings give insights into which measures are the most sensitive for assessing opioid-specific effects.


Assuntos
Analgésicos Opioides/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiopatologia , Morfina/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Adulto , Analgésicos Opioides/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Humanos , Masculino , Morfina/administração & dosagem , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Pupila/efeitos dos fármacos , Pupila/fisiologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Adulto Jovem
18.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208184

RESUMO

The antitumor drug, oxaliplatin, induces neuropathic pain, which is resistant to available analgesics, and novel mechanism-based therapies are being evaluated for this debilitating condition. Since activated microglia, impaired serotonergic and noradrenergic neurotransmission and overexpressed sodium channels are implicated in oxaliplatin-induced pain, this in vivo study assessed the effect of minocycline, a microglial activation inhibitor used alone or in combination with ambroxol, a sodium channel blocker, or duloxetine, a serotonin and noradrenaline reuptake inhibitor, on oxaliplatin-induced tactile allodynia and cold hyperalgesia. To induce neuropathic pain, a single dose (10 mg/kg) of intraperitoneal oxaliplatin was used. The mechanical and cold pain thresholds were assessed using mouse von Frey and cold plate tests, respectively. On the day of oxaliplatin administration, only duloxetine (30 mg/kg) and minocycline (100 mg/kg) used alone attenuated both tactile allodynia and cold hyperalgesia 1 h and 6 h after administration. Minocycline (50 mg/kg), duloxetine (10 mg/kg) and combined minocycline + duloxetine influenced only tactile allodynia. Seven days after oxaliplatin, tactile allodynia (but not cold hyperalgesia) was attenuated by minocycline (100 mg/kg), duloxetine (30 mg/kg) and combined minocycline and duloxetine. These results indicate a potential usefulness of minocycline used alone or combination with duloxetine in the treatment of oxaliplatin-induced pain.


Assuntos
Cloridrato de Duloxetina/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Neuralgia/tratamento farmacológico , Oxaliplatina/toxicidade , Limiar da Dor/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Antibacterianos/farmacologia , Antineoplásicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Camundongos , Microglia/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/patologia
19.
Sci Rep ; 11(1): 13873, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230516

RESUMO

The neurophysiological mechanisms underlying NGF-induced masseter muscle sensitization and sex-related differences in its effect are not well understood in humans. Therefore, this longitudinal cohort study aimed to investigate the effect of NGF injection on the density and expression of substance P, NMDA-receptors and NGF by the nerve fibers in the human masseter muscle, to correlate expression with pain characteristics, and to determine any possible sex-related differences in these effects of NGF. The magnitude of NGF-induced mechanical sensitization and pain during oral function was significantly greater in women than in men (P < 0.050). Significant positive correlations were found between nerve fiber expression of NMDA-receptors and peak pain intensity (rs = 0.620, P = 0.048), and expression of NMDA-receptors by putative nociceptors and change in temporal summation pain after glutamate injection (rs = 0.561, P = 0.003). In women, there was a significant inverse relationship between the degree of NGF-induced mechanical sensitization and the change in nerve fiber expression of NMDA-receptors alone (rs = - 0.659, P = 0.013), and in combination with NGF (rs = - 0.764, P = 0.001). In conclusion, women displayed a greater magnitude of NGF-induced mechanical sensitization that also was associated with nerve fibers expression of NMDA-receptors, when compared to men. The present findings suggest that, in women, increased peripheral NMDA-receptor expression could be associated with masseter muscle pain sensitivity.


Assuntos
Ácido Glutâmico/farmacologia , Voluntários Saudáveis , Injeções , Músculo Masseter/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Caracteres Sexuais , Adulto , Biomarcadores/metabolismo , Tecido Conjuntivo/metabolismo , Feminino , Humanos , Masculino , Mastigação , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Dor/patologia , Limiar da Dor/efeitos dos fármacos , Pressão , Receptores de N-Metil-D-Aspartato/metabolismo , Substância P/metabolismo , Fatores de Tempo
20.
Biomed Res Int ; 2021: 6641701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212036

RESUMO

INTRODUCTION: Animal models are valid for in vivo research on the pathophysiological process and drug screening of gout arthritis. Intra-articular injection of monosodium urate (MSU) is the most common method, while stable MSU deposition enveloped by inflammatory cells was rarely reported. OBJECTIVE: To develop a modified gouty arthritis rat model characterized by intra-articular MSU deposition and continuous joint pain with a minimally invasive method. METHOD: A total of twenty-four rats were randomly allocated into six groups. Three intervention groups of rats received intra-articular MSU embedment. Sham groups received pseudosurgeries with equal normal saline (NS). Gross parameters and pathological features of synovium harvested from anterior capsule were estimated. Mechanical pain threshold tests were conducted over a 96-hour period postoperatively. Moreover, quantitative immunofluorescence was conducted to assess tissue inflammation. RESULT: After MSU embedding, rats got more persistent arthritic symptoms as well as tissue MSU deposition. More significant synovial swelling was detected in the MSU group compared to sham groups (P < 0.025). Behavioral tests showed that the embedding of MSU resulted in prolonged mechanical hyperalgesia during 2 hours to 96 hours postoperatively (P < 0.05). MSU depositions enveloped by inflammatory cells that express IL-1ß and TNF-α were detected in embedding groups. Quantitative immunofluorescence suggested that the frequencies of MSU interventions upregulated expression of proinflammatory factors including IL-1ß and TNF-α (P < 0.05). CONCLUSION: A minimally invasive method was developed to establish modified rat model of intra-articular MSU deposition. This model was proved to be a simple reproducible method to mimic the pathological characteristics of persistent gouty arthritis.


Assuntos
Artrite Gotosa/induzido quimicamente , Artrite Gotosa/patologia , Ácido Úrico/farmacologia , Animais , Artrite Gotosa/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/metabolismo , Inflamação/patologia , Injeções Intra-Articulares/métodos , Interleucina-1beta/metabolismo , Masculino , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...